From Graph Partitioning Problem to Vertical Fragmentation in Distributed
Database Design: A Genetic Approach

Anciano, Juan Luis Arrdiz, Emcly Di Serio, Angela Savino, Nunzio
janciano@ldc.usb.ve arraiz@ldc.usb.ve adiscrio@ldc.usb.ve nunzio@ldc.usb.ve

Departamento de Computacién y Tecnologia de la Informacion
Universidad Simon Bolivar
A.P. 89.000, Caracas, Venezucela

ABSTRACT

The design of a distributed system involves making decisions on the placement of data
and programs across the sites of a computer network. In the case of distributed
databases, the distribution is done physically using techniques such as fragmentation
and allocation. Given a rclational database schema, fragmentation subdivides cach
relation into horizontal or vertical partitions. Navathe et al. [1] proposes an heuristic
based on the grouping of attributes that have high affinity or relation between them.
Some inconvenicnces are found with this approach, and we present an alternative
approach using genetic algorithm and graph partitioning to solve the vertical
fragmentation problcm,

Keywords: Database, Distributed and Parallel Systems, Optimization and Simulation

39

1. INTRODUCTION

The design of a distributed system involves making decisions on the placement of data and programs across
the sites of a computer network. In the case of distributed databases, the distribution is done physically
using techniques such as fragmentation and allocation.

Fragmentation subdivides cach relation, on a relational database schema, into horizontal or vertical
partitions. Horizontal fragmentation of a relation is accomplished by a sclection operation which places
each tuple of the relation in a different partition based on a fragmentation predicate. Vertical fragmentation
divides a relation into a number of fragments by projecting over its attribules.

An important issue is the appropriate unit of distribution. The decomposition of a relation into fragments,
cach being treated as a unit, permits a number of transactions to be exccuted concurrently. The
fragmentation of relations results in distributed cxecution of a single query by dividing it into a set of
subquerics that operate on fragments. Therefore, fragmentation typically increases the level of concurrence
of the querics and enables the placement of data in close proximity (o its place of use, thus improving the
performance of the system. Once the database is fragmented, one has to decide on the allocation of the
fragments to various sites on the network. The present work will focus on the fragmentation problem,
specifically on vertical fragmentation.

The major information required for vertical fragmentation is related to applications that will run on the
distributed databases. Since vertical fragmentation places in one [ragment those attributes usually accessed
together, there is a need for some measure of “togetherness”. This measure is the affinity of attributes,
which indicates how closely related the attributes are. It depends on the application and query access
frequencics. The heuristic proposed by Navathe et al.[1] is based on the grouping of attributes that have
high affinity. Therefore, the problem of vertical fragmentation can be expressed as a maximization problem
of the aflinity between attributes belonging o the same fragment. The general vertical fragmentation
algorithm proposed by Navathe ct al. is computationally expensive and its complexity is O(2").

Since, genctic algorithms arc often viewed as function optimizers, it could be used to solve the
fragmentation problem. Genetic algorithms are a family of computational models inspired by cvolution.
These algorithms encode a potential solution (o an specific problem on a simple chromosome-like data
structure and apply recombination operators to these structures so as to preserve critical information.

The main aim of this paper is o continue our rescarch [9] on the development of an alternative approach to
the problem of vertical fragmentation, starting from the “togetherness” approach proposed by Navathe et al.
but including genctic techniques that guarantee a fast moving in the solution space reducing the tine o
obtain a solution for the vertical fragmentation of a relation. We also want o focus on finding an
appropriate unit of fragmentation to obtain balanced fragments.

The rest of this paper is organized as follows. Section 2 introduces some background information. Section 3
describes our alternative approach to the vertical {ragmentation problem. Scction 4 explains how genetic
algorithms are applied to the problem. Implementation and experimental resulls arc presented in Section 5.
Finally, conclusions are given in Section 6.

40

2. BACKGROUND

Let R(A,A,,...,A,) a rclation where K=({A,,...,A;} is the primary key for R. The vertical fragmentation
problem can be stated as finding a sct of relations

Fr= {Rl (/\11,..., /\]xl),..., Rm(A/nI,..., Amxm)}

such that the following conditions are satisfied:

o Completeness: All the attributes of R must be in at least one {ragment

U Ao A f = { A A

» Reconstruction: The join over the primary key attributes of the fragments in FR produces the original
relation R.

R=p<4 R ,VR €Fxg

e Disjointness: Only the attributes in K can be repeated in all fragments. This will assurc the integrity of
the relation when reconstructed.

vi v (1< <miz je{An A A Aie } = k)

In a distributed database system, the objective of the vertical fragmentation process is to partition cach
relation into a set of smaller relations, so that many of the user applications (at Ieast the most frequents) will
run on the same fragments reducing the number of page accesses. Nevertheless, for a rclation of n non-
primary key attributes, the number of possible vertical fragments rounds to the Bell number B(n), which
tends to n” for large values of n. Such a large domain of solutions leads to consider only heuristics to find a
solution (not necessarily the optimal).

For the vertical fragmentation, the information required is related to the applications that will run on the
distributed databases. Therefore, there is a need for some measure of “togetherness”. The measure used is
the affinity of attributes which indicates how closely related the attributes are. It depends on the applications
and the query access frequencics.

The traditional heuristic used to find a solution to this problem was proposed by [1] for distributed
databases as an extension to the centralized database approach proposed on [3]. It starts with the relation to
be fragmented and decides on beneficial partitioning based on the access behavior of applications to the
attributes. The “togetherness” measure operator defined in these approaches is called Afflinity, and it is
defined as:

41

af(Ai,Aj)= L L ref (g,)aca(q,) (1)
kllue(qk,Al.):]A VS
uszr(qk,Ajjzl

where refi(qy) is the number of accesses to attributes (A;,A;) for each exccution of application gy at site S, of
the distributed system, ace/(q,) is the access frequency on site S, of the distributed system, and use(q, A;)
indicates the use of attribute A; by the application g

[1] presents an optimization problem (heuristic) using this information to solve the vertical fragmentation
problem. The process involves first clustering together the attributes with high affinity for cach other, and
then splitting the relation accordingly. The problem found with this approach is that the splitting procedurc
divides the set of attribules two-way. For larger scts of attributes, it is quite likely that m-way partitioning
may be necessary. The alternative solution proposed is to recursively applied the binary partitioning
algorithm to cach of the fragments obtained during the previous iteration. Therefore, designing a m-way
partitioning is possible but is computationally expensive. The complexity of such an algorithm is O(2™)
because the algorithm scarches the better fragmentation scheme testing each of the possible solutions over
the entire space of alternatives. This alternative is a computationally expensive solution that would make
unfeasible the inclusion of the heuristic in a tools for automating the designing of distributed databases. [9]
presents a m-way partition using genetic algorithms. The fragmentation problem is modeled as a graph
partitioning problem belore it is solved using genctic algorithms.

3. PROPOSAL

The approach proposced, in this paper, follows the idea presented in [9]. We established a correspondence
between vertical fragmentation problem and the undirected k-partitioning graph problem. The
correspondence could be stated in the following way:

Consider a graph G=(V,E), where:

e Vrepresents a sct ol vertices where cach one represents an attribute of the relation R (o be fragmented

e Ercpresents a sct of undirected edges, such that (Vi,Vj)e E ilf the allinity between Vi and Vj is not equal
zero.

e The weight of cach edge is represented by the allinity measure between the vertices (attributes) that the
cdge connects.

42

Al @ 45 0 45 0 |~ ot
A2 0 80 5 75 as | 3 ! 75
A 455 5) E
AL 0TS 3T N 3—{/\;)
4’: 7%
Affinity Matrix Graph Representation

Figure 1: Generated Graph from an allinity matrix

The graph partitioning problem consists of finding an assignment scheme A: V —P that maps attribules o
partitions. Each partition will correspond to a vertical [ragment ol the relation,

The desired assignation scheme A should minimize the number of applications that requires (o access
attributes belonging to different partitions and should try to balance the fragmentation accesses (o increase

the concurrence level of the applications.
We denote by Purt(t) the set of vertices assigned to a partition 7. i.c.

Pari(t)={veV:A(v)=1} (2)

An alternative to find a partitioning of the relation is to try to minimize the cost of the outgoing cdges [rom
a partition. We deline C as the global alTinity measure between attributes belonging to different partitions.

C=)3 ({fj“(\",’,Vj) (3)
YV)eE

ViE Par(1),V jeé Pari(r)

where aff is the same as defined in (1).

The inconvenient of this approach is that it could assign all the attributes to the same partition, and in this
case the cut-size is minimal, or it could assign attributes with lower aflinity on the same partition, or onc
partition could be accessed more than others. We would like (o obtain “balanced” partitions in the sense of
the number of accesses supported by cach partition or [ragment.

Therefore, we need to include another term that will help to find a balanced partitioning. Then, for cach

partition r we define W,(1) as the global allinity measure between the attributes belonging to the partition ¢
43

W= Taf(viv;])
V(V,‘,Vj)EE

Vi'Vje Parr(t)

It is an approximation of the number of accesses supported by the partition 7. Let W be the total affinity
measure

W= Tar(viv;) ®)
Y(ViVj)eE

It is an approximated measure of the total accesses supported by the relation (o be fragmented. Based on the
measures W,, W and C, we would like to make an assignment such that

Z[W,,(t)-%)b +? (6)

is minimized where N is the number of partitions or fragments. To avoid that all the attributes are assigned
to one partition, we need to include a restriction over N (N 2 2). The [irst term on (6) linds a balanced
partitioning, and it is trying to minimize the difference between the allinity of cach partition and the average
access. The second term represents the number of accesses that needs more than one partition. It is raised to
the power of two because both terms have the same importance and the same weight in the expression.

Contrary to the objective function proposed in |2], our proposc docs not establish a limitation on the
number of fragments to be considered. In that way, to obtain an assignment scheme A such that (6) is
minimized over the graph (5 is equivalent to obtain a vertical fragmentation scheme for the relation R.

Obtaining cxact solutions for graph partitioning is computationally intractable, and several suboptimal
methods have been suggested [5][6] for finding good solutions to the graph partitioning problem. Genelic
algorithms are been used succeessfully o [ind suboptimal solutions for a wide varicty of problems.

4. GENETIC ALGORITHM

This scction describes the representation used (o solve the vertical fragmentation problem modceled as a
graph partitioning problem, the function to be optimized and the genetic operators defined that exploit
domain-specific knowledge to improve the solution and the convergence of the problem.

Representation: we use an inlcger vector representation for cach candidate solution or individual in
which the i" element of an individual is j ill the i" atribute of the relation R is allocated to the
fragment or partition labeled j. The size ol an individual is equal to the number of non key attributes
in the relation R. The initial population is randomly initialized.

44

Fitness Function: the fitness function is a measure, relative to the rest of the population, of how well
the individual satisfics a problem-specific metric. In our case, we want to allocate those attributes
that are accessed together in the same fragment, We use (6) as fitness function.

Mutation Function: Traditional mutation functions sclect a random group of individuals that will
undergo mutation. The mutation operator will replace a gene i of the individual with a value sclected
uniformly random from 1 to the number of non key attributes in the relation R. We usc a different
approach to implement the mutation function. The mutation operator will replace a gene i of the
individual with a value that is not sclected uniformly random, but with the value of the partition
where the most affinity attribute was placed.

Crossover: The crossover operator takes genes {rom cach parent and combines them to create new
individuals. The type of crossover commonly used is a two-point crossover, in which the parents abe
and def produce olfspring vec and dbf. The i component of an offspring is chosen to be the same as
that of one of the two parents with equal probability. This kind ol crossover ignores the fact that one
parcnt may have much better genetic malterial than the other. In that sense, we use a Knowledge-
based Non-Uniform Crossover operator as in [4] and we define a probability vector pr=(pry,....pr,),
where pr; is a real number € [0,1]. The value of this probability vector depends on the relative fitness
of the parents, and on the knowledge about the problem. Given pr and the two parent, a=(dy,...,d,)
and b=(by,...,b,), the offspring ¢ is obtained such that il ¢; = b; then ¢ = ¢, clsc the probability
that ¢ = is pr; Let B be the best individual of the last generation. For any candidate solution
X, let af(i,X) be deflined as the allinity ol the partition where the attribute 1 is assigned

af (b, X)= Y aff(i,j) (7)

\j| Part(i)= Part(j)

and let (i,X,B) be delined as the relation between the alfinity of the partition where the attribute 1 is
assigned using the candidate solution X and the aflinity of the partition where the attribute i is
assigned using the best individual of the last generation

: if (i, X
(i,x,8)= L2 ®)
af (i,B)
If a and b are the two parents, we deline de probability vector as
0.5 if (i,a,B)+(i,b,B)=0
1)"1' = (ly(er) (9)

otherwise

(i,a,b)+(i,b,B)

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this work was implemented the fitness function (6) and the mutation operator explained in the previous

section. The crossover function was not implemented and we use a two-point crossover. Our proposal was
45

implemented using the PGAPack Parallel Genetic Algorithm Library [7]. PGAPACK is a parallel genetic
algorithm library that is intended (o provide most capabilitics desired in a genetic algorithm package. The
heuristic proposed by Navathe et al. extended (o m-way partitioning was also implemented in order to test
our approach. For this implementation we did not usc the parallel facilitics of PGAPACK library, we only
construct a sequential implementation of the genetic algorithm.

The experiments were carried out using a relation with ten non key attributes, and we obtained the same
fragmentation schema using the m-way cxtension to Navathe et al optimization function as well as our
proposed optimization function (6). All the experiments were done with a crossover rate of 85%, mutation
rate of 10% and replacement rate of 10%. Table 1 reports different results using both optimization
functions. Experiments were conducted varying the population size.

Population Extended Navathe et al. optimization Our optimization Function
Size Function
Traditional Our Mutation Operator | Traditional Mutation | Our Mutation Operator
Mutation
500 >700) 70 120 60
400 >700 110 100 70
300 >700 130) 180 110
200 170) 110 90 80
100 >700) >500) >500 90

Table 1: Experimental results using dillerent population sizes

A simple inspection of Table 1 shows that our optimization function requires less iterations than the
Navathe et al. m-way extended optimization function. Additionally, using the mutation operator defined in
this work, the number of genetic sequences (iterations) needed (o obtain the expected result is decreased
without varying the population size.

[t is important to remark that with a population size of 10 individuals, our optimization function using the
mutation operator here defined, achicve the expeeted solution in only 230 iterations. This means that instcad
of using large population size (with the associated cost time (o carry out a genetic sequence over the
population), it could be reduced the population size and still obtain solutions as good as the achicve by
Navathe’s ct al. optimization [unction.

A
2500000
w 2000000
e
o
=3
Z 1500000
1000000 YT
DA A TN T I =
.. SN
500000
1 10 20 30 40 50 60 70 80 90

Iterations

T Traditional T2 Proposed

Figure 2: Convergence curves for our fitness function with traditional and our proposed mutation operator.
46

Figure 2 shows how the novel mutation operator improves the convergence rate compared with the
traditional random gene mutation.

6. CONCLUSIONS

Distributed database design has become an important element of — effective information management.
Design quality is critical to achieve good perlormance of applications over the database. An important
phase of distributed database design is vertical [ragmentation process. In this paper, we presented an
alternative approach to carry out this process with the following advantages:

e Instead of exhaustively scarching over the space of probable solutions giving by the heuristics
proposed by Navathe, genctic algorithm restrict the scarch over the space of possible solutions.

e The strategy proposed in this work is more [casible than the one showed in [2] because it is possible to
obtain vertical fragmentation that contains any number of [ragments instcad of two [ragments.

e The strategy proposed is more elfective than the one proposed in [9] since it could be used a small
population and fewer iterations or generations (o obtain the solution of the problem.

Additionally, we have introduced novel operators that exploit the locality information inherent in vertical
fragmentation problem. We have shown this enhances the number of genelic sequences (iterations) required
to get a good vertical fragmentation schema.

We have presented experimental results showing the feasibility of our approach; unfortunately, fragmenting
very large relations does require high amounts of computation by the genetic algorithm and the crossover
operator proposed.

We are currently implementing the Knowledge-base Crossover Operator and parallelizing the algorithm to
run on distributed memory machines such as the PoweXplorer Parsytee. We are also working on designing
a tool that will help the database designer (o build and simulate distributed databases. Furthermore, we are
studying whether the genetic approach can be used in case of incremental changes (aggregation or
elimination of attributes in the original relation) without performing a complete recaleulation. The idea we
arc working on is 1o begin from the previously achieved fragmentation schema and with a small number of
genetic sequences obtain the schema for the new relation.,

7. ACKNOWLEDGNMENTS

We used a PoweXplorer Parsytee with 8 PowerPC601 modules and T805 cach one financed by the project
ITDC139 of the European Union.

8. REFERENCES

[1] S.B. Navathe, S. Ceri, G. Wicderhold and J. Dou. Vertical Fragmentation Algorithis for Database
Design. ACM Transactions on Database Systems. December 1984, Vol 9, No. 4, pages 680-710

(21 M. Ozsu, P. Valduricz. Principles of Distributed Database Systems.Prentice Hall. 1991,
47

[3] H.A. Hoffer and D.G. Severance. The Use of Cluster Analysis in Physical Database Design.
Proceedings of the First International Conference on Very Large Data Bases. Frammingham,
Masschusets, September 1975.

[4] H. Maini, K. Mehrotra, C. Mohan, S. Ranka. Genetic Algorithms for Graph Partitioning and
Incremental Graph Partitioning. IEEE SuperComputing ‘94, November 1994.

[5] A. Pothe, H. Simon and K-P Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM J.
Matrix Anal. Appl. 11, 3 (July), 1990.

[6] H. Simon. Partitioning of unstructured mesh problems for parallel processing. Proc. Conf. Parallel
Methods on Large Scale Structural Analysis and Physics Applications, Pergamon Press, 1991.

[71 D. Levine. Users Guide to the PGAPACK Parallel Genetic Algorithm Library. January 1996.

[8] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Publishing Company, 1989.

[9] J. Anciano, E. Arréiz, A. Di Serio, N. Savino. Alternative Approach for Distributed Database Design.

To be published on World Multiconference on Systemics, Cybernetics and Informatics (SCI'97). July
1997. :

48

